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Abstract
Error analysis of regularization methods in Hilbert spaces is based on
smoothness assumptions in terms of source conditions. In the traditional
setup, i.e. when smoothness is in a power scale, we see that not all elements
in the underlying Hilbert space possess some smoothness with this scale.
Our main result asserts that this can be overcome when turning to general
source conditions defined in terms of index functions. We conclude with some
consequences.

The issue of smoothness is essential when treating ill-posed inverse problems. On the one
hand, smoothing properties of the forward operator are responsible for the ill-posedness, but
linear and nonlinear ill-posed problems become conditionally well posed when restricted to
appropriate classes of solutions with imposed smoothness. On the other hand, theoretical rates
of reconstruction by regularization methods depend on the interplay between the smoothing
properties of the forward operator and the smoothness of the solution.

Regularization theory in a Hilbert space setting is well developed and proves to be
particularly simple when the character of solution smoothness is immediately tied to the
forward operator for linear inverse problems, or to its linearization in the nonlinear case.

To avoid technical difficulties in our subsequent discussion, we shall focus on linear
equations

Ax = y, (1)

where the forward operator A : X → Y acts injectively between the Hilbert spaces X and Y,
with norms ‖·‖ and inner products 〈·, ·〉, and has a nonclosed range R(A). Then the related
nonnegative selfadjoint operator H := A∗A is injective and has nonclosed but dense range
R(H) ⊂ X. We mention that in this case zero must be an accumulation point of the spectrum
of the operator H.

Since the early error estimates for regularization methods of such operator equations in
Hilbert spaces smoothness has been measured in terms of source conditions (source-wise
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representations). The first appearances are probably in [11] by Lavrentev and in [15] by
Morozov. We also mention the influential contributions by Vainikko [18], Groetsch [5],
Baumeister [1], Louis [12], and the more recent fundamental monograph by Engl et al [4].
Precisely, it is assumed that there are two values 0 < p < ∞ and 0 < R < ∞, for which

x ∈ Hp(R) := {x : x = Hpv, ‖v‖ � R}. (2)

The representability of x in such form (2) can be rephrased by saying that x ∈ R(Hp). If the
operator H were such that R(H) = X, then H would be boundedly invertible and so would
be Hp for all p > 0, thus R(Hp) = X, and each x would obey a representation in terms of
source sets (2) for every p > 0. Hence the case of operators H with closed range is not of
interest.

Now we are going to establish the first result, which is not surprising.

Proposition. For each injective, bounded, selfadjoint and nonnegative linear operator
H : X → X with nonclosed range there is an element x ∈ X which does not belong to
the source set Hp(R) for any 0 < p < ∞ and 0 < R < ∞.

Proof. We fix some µ > 0 and let ϕ(t) := log−µ(a/t) (0 < t � ‖H‖ < a). The
assumed properties of H carry over to the corresponding operator ϕ(H). We claim
that R(ϕ(H)) 	⊂ R(Hp), for any p > 0. Indeed, if for some p > 0 the inclusion
R(ϕ(H)) ⊂ R(Hp) were true, then by the reasoning below the operator H−pϕ(H) must
be bounded on X, which in turn implies that the function ϕ(t)/tp(0 < t � a) also must be
bounded, since zero is an accumulation point of the spectrum of H. However, the quotient of
ϕ(t) and tp tends to infinity as t → 0. Hence, there is some v ∈ X for which x := ϕ(H)v

does not belong to the range R(Hp).
It remains to show that R(ϕ(H)) ⊂ R(Hp) implies the boundedness of the operator

H−pϕ(H). To this end we recall one result from ([2], proposition 2.1(a)): If for some pair
S, T : X → X of bounded selfadjoint linear operators the range inclusion R(S) ⊂ R(T ) is
valid, and if T is injective, then necessarily the mapping T −1S: X → X is bounded. This
immediately yields the required boundedness, and hence completes the proof. �

The function ϕ(t) := log−µ(a/t)(0 < t � ‖H‖ < a) used in the proof leads to study
more general source conditions of the form

x ∈ Hψ(R) := {x : x = ψ (H) v, ‖v‖ � R}, (3)

where the function ψ : [0, ‖H‖] → (0,∞) is an index function in the sense of [8, 14], i.e., it is
continuous, strictly increasing, and obeys ψ(0) = 0. Such general source conditions naturally
occur when treating severely ill-posed problems. We mention [13] for a first analysis in this
context, and [9], where logarithmic source conditions like above were used.

The analysis of ill-posed equations under general source conditions (3) was pioneered
independently by Hegland [6, 7] and Tautenhahn [17]. A more systematic account was
started in [14] and continued in subsequent papers by these authors. As a function of the
regularization parameter the present authors analyzed the noiseless residual errors (called
profile functions) of regularization methods under general source conditions in [8] implying
most relevant assertions on convergence rates.

However, one principal problem was left untouched: How general are general source
conditions? Complementing the above proposition we now ask, given an operator H : X → X,
whether every x ∈ X obeys a general source condition for some index function ψ? Apparently,
no authors discussed this principal question so far. In the theorem below we shall give an
affirmative answer to this question in case that A, and hence H, are compact operators.
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Returning to the argument in the proof of the proposition we also cannot expect an
affirmative result to hold if we replace the power scale in (2) by other scales, as e.g. logarithmic
scales with functions ϕ(t) = log−µ(a/t)(0 < t � ‖H‖ < a) with µ ranging in (0,∞). In
fact, then we could take double logarithmic functions for which failure of representability
could be assured. The same would hold true for poly-logs, and so on. Thus some essentially
different reasoning must be used, and we turn to the main result in this note.

Theorem. Let H : X → X be a compact, injective, selfadjoint and non-negative linear
operator. For every x ∈ X and ε > 0 there is an index function ψ such that x ∈ Hψ(R) for
R = (1 + ε)‖x‖.

Proof. Let {sj , uj }∞j=1 be the eigensystem of the compact operator H, where {uj }∞j=1 ⊂ X is a
complete orthonormal system, and ‖H‖ = s1 � s2 � . . . > 0 denote the corresponding
eigenvalues of finite multiplicities, arranged in non-increasing order. Under the above
assumptions, zero is the only accumulation point of the set of eigenvalues S(H) := {sj }∞j=1,
which coincides with the spectrum of H, thus N is disjointly decomposed as N := ⋃

λ∈S(H) Bλ

into finite sets Bλ of positive integers, for which sj = λ, j ∈ Bλ. We let nλ := minj∈Bλ
j for

all λ ∈ S(H).
We denote the Fourier coefficients of x by ξj := 〈x, uj 〉, j ∈ N. Plainly, ‖x‖2 =∑∞

j=1 |ξj |2. The proof is based on the following technical assertion, which is well known (see
e.g. [16], section 8.6.4): For every ε > 0 there is a sequence 1 � σ1 � σ2 � . . . > 0, such
that limj→∞ σj = 0 and

∞∑

j=1

|ξj |2
σ 2

j

� (1 + ε)‖x‖2.

The sequence {σj }∞j=1, may not be strictly decreasing, and we auxiliarily assign the strictly
decreasing sequence

µ2
j := 1 + ε/j

1 + ε
σ 2

j , j ∈ N,

which allows for an estimate
∞∑

j=1

|ξj |2
µ2

j

� (1 + ε)2‖x‖2.

On the spectrum S(H) we define the strictly increasing function

ψ̃(λ) := µnλ
, λ ∈ S(H). (4)

By construction the function ψ̃ obeys limλ→0 ψ̃(λ) = 0. By linear interpolation it may be
extended continuously and strictly increasing to an index function ψ . Finally,

∞∑

j=1

|ξj |2
ψ2(sj )

=
∑

λ∈S(H)

∑

j∈Bλ

|ξj |2
ψ2(sj )

=
∑

λ∈S(H)

∑

j∈Bλ

|ξj |2
µ2

nλ

�
∑

λ∈S(H)

∑

j∈Bλ

|ξj |2
µ2

j

� (1 + ε)2‖x‖2.

Thus we let v := ∑∞
j=1

ξj

ψ(sj )
uj . By the above calculations v is a well-defined element in X,

with ‖v‖ � (1 + ε)‖x‖, and x = ψ(H)v. �
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The above result may have various implications, and we mention a few of those.

Corollary 1. Given any x ∈ X and a compact, injective, selfadjoint, non-negative linear
operator H : X → X, there is no maximal smoothness with respect to H under all index
functions ψ with x ∈ Hψ(R) for some R > 0.

Proof. Indeed, we could iterate the argument of the theorem: For x = ψ1(H)v1, ‖v1‖ � R1,
we find an index function ψ2 with v1 = ψ2(H)v2 and ‖v2‖ � R2. But then x ∈
R(ψ1(H)ψ2(H)), where ψ1(t)ψ2(t) is an index function with higher decay rate to zero
than ψ1(t) as t → 0. �
Even though, due to Corollary 1, no element has maximal smoothness with respect to H, it
still may have unlimited or limited smoothness. In the latter case the corollary asserts that no
limit is attainable.

Other consequences of the theorem are from the theory of linear regularization methods,
and we refer to ([4], chapter 4) for details on this subject. The following result strengthens the
assertion of the theorem and has implications for bounding the residual errors in regularization
at the solution (the profile functions), where we refer to [8] for details.

Corollary 2. Given any x ∈ X and a compact, injective, selfadjoint, non-negative linear
operator H : X → X, there are a concave index function ψ and a constant R > 0
such that x ∈ Hψ(R). Consequently, Tikhonov regularization yields a profile function
‖α (A∗A + αI)−1 x‖ � Rψ(α) at x.

Proof. Using the theorem we find an index function, say ψ0, and R0 > 0 such that
x ∈ Hψ0(R0). Now we continue in several steps. First we let

ωψ0(δ) := sup {|ψ0(s) − ψ0(t)|, 0 � s, t � a, |s − t | � δ}, δ > 0,

denote the modulus of continuity of ψ0. This is a continuous, non-decreasing function which
obeys limδ→0 ωψ0(δ) = 0. Plainly, ψ0(t) � ωψ0(t), 0 < t � a. Moreover, for every
modulus of continuity ω, see e.g. ([10], lemma 6.1.4), there is a concave function ω̃, with
ω̃(t) � ω(t) � 2ω̃(t), t > 0, i.e. 2ω̃ψ0 is a concave majorant of ψ0. In a final step we ensure
strict monotonicity by letting

ψ(t) := ω̃ψ0(t) + t/a, 0 � t � a,

which is a concave index function. We claim that x ∈ Hψ(R) for R = 2R0. Precisely, for
the eigensystem {sj , uj }∞j=1 of the compact operator H and ξj := 〈x, uj 〉, j ∈ N , we have to
show that

∞∑

j=1

|ξj |2
ψ2(sj )

� R2 for R = 2R0, (5)

taking into account that
∑∞

j=1
|ξj |2

ψ2
0 (sj )

� R2
0 . Now the following inequality chain holds true:

∞∑

j=1

|ξj |2
ψ2(sj )

�
∞∑

j=1

|ξj |2
ω̃2

ψ0
(sj )

� 4
∞∑

j=1

|ξj |2
(2ω̃ψ0(sj ))2

� 4
∞∑

j=1

|ξj |2
ω2

ψ0
(sj )

� 4
∞∑

j=1

|ξj |2
ψ2

0 (sj )
,

which yields the estimate (5).
The remaining assertion follows from known results (see e.g. [14], lemma 2), or the more

recent ([2], proposition 3.3). �
The existence of a profile function, as exemplarily shown in Corollary 2 for the Tikhonov

regularization, is important for the a posteriori parameter choice with the Lepskiıı̆ balancing
principle, and we refer to the recent paper [3] as one example. Other consequences of the
above results still need to be explored.
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Note added in proof. Sergei V Pereverzev (Linz) pointed out to us one important consequence of Corollary 1: Given
noisy data it is impossible to obtain order optimal regularization by any a priori parameter choice rule, which is based
on smoothness. This strongly supports the use of a posteriori rules for regularization.
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[14] Mathé P and Pereverzev S V 2003 Geometry of linear ill-posed problems in variable Hilbert scales Inverse

Problems 19 789–803
[15] Morozov V A 1968 O printsipe newyaski pri reshenii operatornykh uravneniı̆ metodom regulyarizatsii Ž. Vyčisl.
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