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Abstract

In this paper we present a mathematical model and a numerical approach for a
computer-based simulation of electric fault arc tests including the solution of cor-
responding direct and inverse problems. In particular, we replace the complicated
initial-boundary value problem of heat transfer in arc tests by a one-dimensional
model based on a purely time-dependent temperature function G(t) of hot gas in
a neighborhood of the arc. We analyze the forward problem with respect to its
well-posedness and suggest an appropriate numerical approximation. However, we
are especially interested in the ill-posed nonlinear inverse problem of identifying
(calibrating) the important parameter function G' from temperature measurements
at a defined distance to the arc during some time interval, where a simplified test
procedure is exploited for obtaining temperature data. We present a least-squares
solution indicating the ill-posedness effect by strong oscillations and compare a solu-
tion from Tikhonov regularization with a solution from a descriptive regularization
approach.
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1 Introduction

Fault arc tests are performed in textile research and certification of protective clothes.
The protective clothes we are concerned with are used by people working on electric
installations who are exposed to the risk of fault arc accidents, potentially causing injury
with heavy burns. There exist different international standards for arc tests on such
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Figure 1: Schematic test arrangement.

protective textiles [9]. Omne particular European test is the so-called CENELEC test,
prescribed in the pre-standard ENV 50354:2001. This box-arc test method [11] contains a
visual assessment (after flaming, hole formation, shrinking etc.) as a qualitative criterion
and was extended and improved by including additionally a quantitative measurement
of temperatures in order to get information about transmitted energy. A schematic test
arrangement of such a complemented test is shown in Figure 1.

An electric arc is fired between two vertically arranged electrodes in a test circuit of
defined voltage (AC). After the burning-time interval of ¢, = 0.5s the arc is switched
off. A surrounding box focuses thermal arc effects in direction to a test plate with test
object, which is arranged in a defined distance to the electrodes. The object consists of
a variable number of textile layers stretched onto the test plate and a skin-simulating
copper calorimeter embedded by an isolating block in the test plate as shown in Figure 1.
The calorimeter is connected to a thermocouple, and so the calorimeter temperature is
measured from the arc ignition (¢ = 0) until the end of measuring time ¢4 = 30s.

Such tests are expensive to realize, and extensive technical equipment is required. A
current of 7kA has to be controlled and held stable in a circuit for half a second, the
complete arrangement has to sustain temperatures of several thousand degrees. Moreover,
the textile or clothing which is tested will be destroyed during the test. For these reasons
large series of arc tests, for instance in order to take parametric studies, are not practicable.
This gives rise to the need for a model of the test which enables us to study the influence
of some material parameters on thermal test results.

A numerical simulation of calorimetric arc effects based on the complemented test method
was realized at Chemnitz University of Technology in cooperation with the Saxon Textile
Research Institute (STFI) and Ilmenau University of Technology, [12|. The underlying
model, proposed in this paper, is based on the following assumptions:

e A nonlinear heat equation is set for the heat flux inside the object (textile and
calorimeter). An important part of the nonlinearities takes the radiation which is
modelled inside the object by a special source term.



e For modelling the boundary conditions a heat transfer proportional to the temper-
ature difference at the interesting material borders is assumed.

e Both boundary conditions and radiation source include a simulated gas temperature
G, modelling the influences of hot gas between the arc and the examined object.
Unfortunately, this temperature as function of time is unknown. The reason for
this holds in the high, fast changing temperatures and the explosion effects caused
by the arc. The used measuring device is not able to determine this temperature
(nevertheless, exactly seen G is only a model quantity and so cannot be measured).

Thus, in order to use the model we need the function G. Its determination is proposed
in the following manner:

e We focus on a special case, the test without textile layers.

e Temperatures on the back side of the calorimeter can be measured for this test.
This way, measurement data is available.

e The determination of the unknown temperature function G by using this data leads
to an inverse problem. Studying it in several aspects is the main part of the paper.

This paper, which is an extended version of [13], will be organized as follows: For the
numerical simulation of the test we used a mathematical model, which will be described in
Section 2. In the model building process we have replaced the very complex structure of
the system formed by arc, heated gas and reflecting box by a gas temperature function G
depending on time ¢ only. The determination (calibration) of this parameter function G,
which influences the result of test simulation in an essential manner, leads to the inverse
problem discussed in this paper. Before handling the stable approximate solution of this
inverse problem in Sections 5 and 6, we briefly analyze the associated forward problem in
Section 3 and discuss its numerical solution in Section 4. We end with some conclusions
in Section 7.

2 The mathematical model

We have simplified the whole test arrangement in form of a locally one-dimensional heat
equation problem, where the gas temperature near the arc is assumed to be a function
G(t) of time t. The spatial z-axis lies orthogonal to the surface of the test object (plate
with or without textile) such that the temperature of interest here are directed along the
xr-axis. Figure 2 shows the modelled object with three textile layers as an example.
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Figure 2: 1D-model of the object.

We use the following notations:

x 1D local coordinate, x € (0,1),

t time, t € [0, 2],

u=u(z,t) temperature in the object,

G =G(t) temperature of the hot gas,

CA(x,t,u) apparent heat capacity (modified, specified by volume),
K(z,u) thermal conductivity,

fraa(z,t,G, D) radiation heat source term,

ho, h heat transfer coefficients.

The occurring temperatures v and G are seen as relative temperatures with respect to
the ambient temperature Ty, = 300K. Moreover, we define the space-time cylinder @) :=
(0,1) x (0, ¢tnd).

Then, the temperature distribution v = wu(z,t) is the solution of the initial-boundary
value problem for the heat equation

CA(x,t,u)g—ltL — % </<c(x,u)g—z> = fraa(z,t, G(t),u(0,1)), (x,t) € Q, (1)

with boundary conditions

—n(O,u(O,t))aug;’ 2 = ho(G(t) — u(0,1)), t e (O,tend], (2)
li(l,u(l,t))aua(i; t_ —hgu(l,t),  te (0], (3)

and initial condition
u(z,0) =0, z € 1]0,1]. (4)

Heat effects enter the model by boundary conditions in form of heat convection and by
the source term f,,q in the differential equation indicating the effect of radiation. We
formulate the corresponding forward problem.

Definition 2.1 (Forward problem) Let the parameters CA, K, hy, hy, G and frq be
given. Find a solution w of (1) — (4) in Q.



Note, that the source term contains a special nonlinearity. In particular, f,.,; depends
only on the temperature u(0,t), t € [0,t"], at the left boundary. Standard theory of
quasilinear differential equations presumes, that f..q is a function of the temperature u
itself. Therefore, we briefly consider conditions for the solvability of the problem (1) —
(4). We assume for the gas temperature that G € Dy, with

Dhox == {G € C[0,t™] : 0 < G(t) < Gax, t € [0,t™]}

and a given maximal gas temperature Gp.c. Here, C[0, 1] denotes the Banach space of
all continuous functions on the interval [0, tnd]. Moreover, for the coefficients C4 and &
we assume for all (z,¢,u) € Q) x R that

0<Cf <Ca,t,u) <03 <oco and 0 < kg < k(z,u) < Ky < 00, (5)

with constants C;', C3', k1 and k. Then we can prove the following existence result in
the space C*1(Q), which contains all functions on Q C R?, which are twice continuously
differentiable with respect to the first and once continuously differentiable with respect
to the second variable.

Proposition 2.2 Let G € Dy,, and let the inequalities (5) hold. Moreover, we assume
that | frua(r,t,G, D)| < C for all (z,t) € Q, G € [0, Gmay), for some constant C > 0 and
|D| < Cmax{C, Gmax} for some constant C > 0, which depends on Ci ki, i =1,2 and
tend, Then there exists a solution u € C*1(Q) of (1) — (4).

SKETCH OF A PROOF. We consider the mapping M : C(Q) — C(Q), where M (uy) is
the solution of (1) — (4) when u is replaced by ug in the coefficients C* and & and in the
source term f,q. Since we consider a linear parabolic initial boundary value problem, the
mapping M is well-defined (see, e.g., [10, Theorem IV.5.4] for an existence and uniqueness
result). Moreover, by [10, Theorem 1.2.3] we have the estimate

max |u(z,t)| < C, = C max {max |f(x,t)|,GmaX} ,

(@,t) (@,t)

where f(x,t) ‘= fraa(2,t, G (1), u0(0,1)) and C depends only on C#, k;, i = 1,2 and ¢, If
we introduce the set Q := {u € C(Q) : max |u| < C, on Q}, then M maps Q into itself.
Moreover M (ug) € C%1(Q) is uniformly bounded in the norm of C*1(Q) (see [10, Theorem
IV.5.3]). Hence, by the well-known compactness of embedding from C*(Q) into C(Q),
the range M () for any bounded subset Q C Q is relatively compact in C(Q) Thus, M
is a compact operator. By Schauder’s fixed-point theorem (see, e.g., [16, Theorem 2.A])

M contains a fixed-point which solves (1) — (4). B

Recalling the technical background, the recommended continuity of the function G is not
very restrictive with respect to the model.

In order to calculate u(z,t) from (1) — (4) the knowledge of the gas temperature G(t),
t €0, tend], is required. For the determination of this function temperature measurement
data from calibration tests are used. The calibration test is performed without textile
layers, where the object consists of the test plate with the calorimeter only. For this
reason, we use the simplified version

du 9 u

Ccu 5% " B </{Cua—$> = fraa(x,t, G(t),u(0,1)), (x,t) € Q, (6)
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of heat equation. Here the volumetric heat capacity Cc, and the thermal conductivity kc,
are assumed to be constant. Note that k¢, in fact depends on the temperature, but the
measured and simulated temperatures of the copper calorimeter are from the temperature
interval [20°C, 110°C] (see Section 6). For this range, however, the thermal conductivity
of copper is nearly a constant (see, e.g. |7, Chap. 6-12, Table 6-18]). The radiation source
term has the structure

fraa(z, 1, G(t),u(0,t)) = ve 7 (qa(t) + Baas(G(t) + To)* — Bov; (w(0,t) + Tp)* — Ty'))
(7)
for (z,t) € @ with positive constants Sgas, Bob; and 7, see e.g. [14]. The function g,(%)
is the given source term of the burning arc, which is a piecewise constant function which
vanishes on the interval (¢,,t4]. The boundary conditions (2) — (3) and the initial
condition (4) are reduced to

ne D (@) - u00), e 0.0
fmu&ghw = —hau(l, 1), t € [0, tm), (8)
X
u(z,0) =0, z € [0,1].

In this simplified model nonlinearities occur only in the radiation source term.

The inverse problem under consideration here aims at finding the gas temperature function
G(t) from given lateral data u(l,t) for t € [0,t4] solving the problem (6) — (8).

Definition 2.3 (Calibration Problem) Let the parameters Ccy, Kcu, ho, hs and fraq
be given. Find a pair of functions (G,u) such that u is a solution of (6) — (8) on Q, which
fulfills the equation

u(l,t) = ugaa(t).  t €0, (9)

for a given lateral measurement ugqe,(t), t € [0, "]

Let L2(0,t™d) be the space of source functions to be determined. Furthermore, let F :
D(F) C L?(0,td) — L2(0,t™) define the mapping which is given by

F@))) = ul,t),  telo, ], (10)

where u denotes the solution of (6) — (8). Then we can rewrite the problem (9) as an
operator equation
F(G) = ugata, G € D(F). (11)

The domain D(F') under consideration may contain all a priori information on the time-
dependent behavior of G. In the simplest case we assume continuity and box constraints,
i.e.

D(F) := Dpox N L*(0, 7). (12)

Furthermore, we restrict D(F') by known local monotonicity constraints on some subin-
tervals to obtain additional stabilization of the inverse problem. The assumption that
F maps into the space L2(0,t?) seems to be natural when we consider the numerical
solution of (11) in a least-squares sense.



3 Well-posedness of the forward problem

In this section, we consider the continuous dependence of the solution of initial-boundary
value problem (1) — (4) on the given gas temperature G(t), t € [0,t"!]. To simplify the
analysis we assume that the coefficients C4 and & do not depend on the temperature u.
Note that the generalization of the considerations given below to the case of temperature-
dependent coefficients is not difficult.

Let G1,G2 € Dyox be two given parameters, where uy = uq(z,t) and us = us(z,t) with
(z,t) € Q denote the corresponding solutions of (1) — (4). We set h := Gy — Gy and
w = uy — uy. In particular we have h € L?(0,t). Using the mean value theorem for
functions of several variables we derive

frad(xjt, Go(t),us(0,t)) — fraa(z,t, Gl(t)jul(ojt)) =

frad( G(w,t), a(x, 1)) h(t) + frad( G(.t), a(z, 1) w(0,1) =t frq(.t)

for (z,t) € Q and two intermediate functions G(z,t) and i(z,t) satisfying
min{G1(t), Go(t)} < G(x,t) < max{Gy(t), G2(t)}
and
min{u1(0,t),us(0,¢)} < a(z,t) < max{ui(0,t),us(0,¢)},

respectively, for (z,t) € Q. Note that both intermediate functions G(z,t) and @(z, t)
depend on ¢ as well as on x. Hence for w = w(x,t) we obtain the initial-boundary value
problem

a2 - 2 () 2980 ) = (ot @neq
w020 g ()~ wio.ny). e o),
m(z)awa(i’t): “haw(L, 1), t e [0,t),

w(z,0) = 0, z € [0,1]. )

(13)
For the problem (13) we can apply the theory of linear parabolic equations, see e.g. |2,
Chapter 7.1]. Therefore, we consider the weak formulation of this initial-boundary value
problem. Let H'(0,1) be the Sobolev space of all functions v € L?(0,1) with v' € L*(0,1)
with norm

2

! !
vl 10y = /1)2(30) dx+/(v'(x))2dx ,
0 0

while (H(0,1))’ denotes its dual space. We define B : H'(0,1) x H*(0,1) x [0,t™1] — R
as the time-dependent bilinear form

B, o.1) = /K——; d + ot (0)i(0) + hati(1)o(1) —w(o)/a%frad(é,ﬂ)@ d



Moreover, let f(t) : H*(0,1) — R denote the time-dependent functional defined by

l
(f(t),0) = ho 0(0) + / %frad(é,a) bdz, e HY0,1).

0

Then, a function w € L?(0,t**4; H1(0,1)) with w; € L2(0,t*; (H(0,1))’) and w(x,0) = 0,
x € [0,1], is called a weak solution of (13) if

t* t*

t* 1
// cAaa—Q:@ dxdt+/B(w(t),f;,t) dt = /h(t)(f(t),@) dt Ve 120, HY(0,1))
00

0 0

for almost all t* € [0,¢"9]. Here, the norm of the space L?(0,t®™d; H1(0,1)) of abstract
functions is defined as

[tend ! ! '| 3
||’LUHL2(U7tend;H1(U7l)) = / /w2(x,t) dx+/(w'(x,t))2 dr | dt| .
0

Y |

The space L*(0,t™%; (H1(0,1))’) is defined analogously.

To apply well-known solvability results for weak solutions of parabolic problems, we have
to assume that f..q is differentiable with respect to G and D and

D _ afrad G ._ afrad
oG

< oo and

< 00 (14)
hold for (z,t) € Q;. This leads to the following proposition.

Proposition 3.1 Assume that C* and k satisfy (5). Moreover, let fa(z,t, G, D) be dif-
ferentiable with respect to G and D and let (14) hold. Then, for every h € L?(0,t°"%), the
initial-boundary value problem (13) possesses a unique weak solution w € L*(0, "% H(0,1))
with

(SUP g ||w(-7t)||i2(071) + ”wHi?(O,tend;Hl(O,l)) <C ||h||i2(0,tend)' (15)
te(0,ten

SKETCH OF THE PROOF. Under the assumptions of the proposition there exist constants
C1, Cy and C5 which satisfy

1B, 0,)] < Crllo|laon|ollaon. Vo, o€ HY(0,1),

and
B, . t) + Col[w|[720) > Calliollznoy. Vi€ HY(0,1),

and almost all ¢ € (0,°"4]. In this context, these constants depend only on [, k1, Ko, h, hs
and f2,. Moreover, the norm of the functional f(¢) is bounded by a constant Cy which
depends only on [, hy and fS;. In particular, Cy does not depend on t. Following the
proofs of [2, Section 7.1, Theorems 3 and 4| we derive the existence of a unique weak

solution w of (13), by noting that the cited results depend only on the properties of
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the bilinear form B(w,,t) and not on the corresponding boundary conditions of (13).
Moreover, the estimate

tend

2
(S(}lpd]Hw('vt)Hi?(U,l)+||w||i2(0,T;H1(0,l)) < C/ 1 f )Nl arony)” dt
te(0,ten

< CC4||h||L2(o,tend)=

holds by [2, Section 7.1, Theorem 2|, which proves the theorem with C' := C' C?. W

Now we can directly conclude the uniqueness of the solution to (1) — (4) and the continuous
dependence of this solution on the gas temperature function G' € Dy .

Corollary 3.2 The unique solution u € L*(0,t*"% HY(0,1)) of (1) — (4) depends contin-
uously on the gas temperature function G € Dy,. In particular, for Gi1,Gy € Dy, and
corresponding solutions uy and us, respectively, of (1) — (4) we have the estimate

|ug — U1||L2(0,tend;H1(0,l)) <C|Gz - GIHL?(O,twd) (16)

with a constant C' > 0 that does not depend on Gy and G-.

PROOF. The continuous dependence of the solution u on the parameter function G follows
directly as a consequence of the estimate (15). Let G € Dy be given arbitrarily and let
u and @ be two solutions of (1) — (4). Then w := u — @ satisfies (13) with » = 0. From
Proposition 3.1 we then have w = 0 and hence v =u. R

4 Numerical approximation of the forward problem

In this section, we outline the approximate numerical solution of the initial-boundary
value problem (1) — (4). Here, the gas temperature G(t) is assumed to be known. The
time- and space-dependence and the nonlinearities in C4, k and f..q require some special
treatment.

We are going to use as time-stepping algorithm the classical backward Euler scheme: Let
7 denote the time increment and «™(z) the approximate solution at time step ¢, then for
tn+1 = t, + 7 we have to solve the nonlinear (ordinary) differential equation

n+1

—ut d d
- dx <K/(.’L', un+1)%un+1> - frad (.’L’, tnt1, G(tn+1)’ un+1 (0))

T Cdx
(17)

CA (2, oy, w2

for x € (0,1) in space with boundary conditions

—+ (0,u"1(0)) Zu"(0) = ho (G(tns1) —w*1(0)),
ki (Lum (1) Lum (1) = —hyut (D).

dx

For the discretization in space, we can use linear finite elements. Here, the fact of one space
dimension leads to stiffness and mass matrices that are tridiagonal and each linear system

9



with such a matrix is solved with optimal arithmetical complexity (proportional to the
number of unknowns). So, we can use a very fine mesh without concerns of computational
time. For this reason it seems to be convenient to focus on linear elements. Let z; = i h
be the discretization points and ¢;(x) the hat—functions (linear in each interval [x; 1, z]
and ¢;(z;) = 0;;) with h = /N and i = 0,..., N. The equidistance of the points z; is
not necessary. Then, the weak formulation of (17) reads as:

Find «"*!(z) € H*(0,1) with

0 0
A n+1 n+1
(C*u 7v>$+7<li—a$u B

= 7{f, ) + (CHu", v), +v(0) T ho G(tns1) Vv e HY(0,1). (18)

v> +7v(0) hgu"(0) + 7 v(l) hy u" (1)

I
Here, (u,v), = [uwv dz stands for the Ly—inner product of functions over [0,]. Note that
0
CHA = CMw, typr, u™), k= Kz, u™) and f 1= fraa(z, tni1, G(tny1), u"1(0)) contain
the nonlinearities associated with their dependence on the solution «"*! at the current
time step.

N
With u"*1(z) = Y ul g (z) we represent the finite element approximation of this func-
i=0

tion by a unique vector u"*! = (ultHY, € R¥*1. Then (18) coincides approximately

with the non-linear system of N + 1 equations
M(ﬂnJrl) ﬂn+1 4 TK(@THI) ﬂn+1 — Tb(@nJrl) + M(gnJrl)yn (19)

with the tridiagonal matrices M and K, which depend on the solution as

N
M(y) - (<CA($j7t’n+17uj)g0j7g0i>x)i’j:07

K(u) = <<,{($j’ uj)%goj7 a%goi>x + ho ¢;(0) @i(0) + s 0;(1) %’(D) )

i,j=0
and
b(ﬂ) = (<frad(37z'7 tn-l—lv G(tn-l-l)u u0)7 §0i>;v + QOZ(O) hO G(tn-l-l) + (pl(l) hs Tamb)?io :
To solve equation (19) we consider the convergence of the iteration
@ =", v® is the solution of
(20)
(M@* V) +7 Kk ) v =7b* )+ M*D)u" k=1,2,....

We can prove convergence of the iteration process (20).

Lemma 4.1 Let C4, & and f,.q be differentiable functions with respect to u and let their
derivatives remain bounded. Then there exists a constant 1y such that the iteration process
(20) converges to the unique solution of (19) for all 0 < T < .

SKETCH OF A PROOF. We can rewrite (19) as a fixed-point equation as follows
u = (M(u)+7K(@w) " (
= (M(u)+7 K@) (r
= 7 (M(w)+7K(w) (b
= T(u)



with the nonlinear operator T : R¥ ™1 — RV, Let be uy,u, € R¥*1. Under the
conditions stated above we can use Taylor’s expansion to derive the estimate

17T (1) = T(w)ll2 < 7C g = usl2

with a constant C' > 0 chosen independently of u; and u,. Here, || - ||2 denotes the
Euclidean norm. Choosing the time step 7 sufficiently small, i.e. 7 < 75 := C™!, the
mapping 7T is contractive. Hence, equation (19) has a unique solution ¥+ and we obtain
convergence v®) " as k— co.

Note that discontinuities with respect to u occur in the original problem (1) — (4) in the
coefficient C# caused by the modelled effects of moisture evaporation and thermochemical
processes inside the textile (see [12]). On the other hand, numerical tests have shown that
such jumps in the parameters can destroy the convergence of the iteration process (20).
Therefore, discontinuous coefficients have to be approximated by sufficiently smooth func-
tions. We have successfully used an approximation of C* with piecewise linear functions
in temperature.

5 Properties of the Calibration problem

For solving the inverse problem (11) by an appropriate algorithm we have to consider the
differentiability of the operator F'. Therefore, let Gy, G1 € D(F) be given arbitrarily and
set h := G1 — Gy. Moreover let, for ¢ € [0, 1], u. denote the solution of (6) — (8) with
Gy + ¢ h instead of G. Furthermore, for ¢ > 0, we set z. := %(uE — ). Then z. is the
solution of the initial-boundary value problem (6) — (8) when f.q is replaced by

0 0

@frad(xu t, G,;(l} t)u ua(xu t)) h(t) + 8—D

frad(xu t7 G’E(mu t)? ,0’6(3;7 t)) 25(07 t)

with two intermediate functions G.(z,t) and 4. (x,t) for (z,t) € Q. Hence z. exists for

every ¢ > 0. Moreover, we have G.(z,t) — Go(t) and 4.(z,t) — u¢(0,t) for ¢ — 0. By

considering the limit z := lir% z. it follows now easily that z = z(z, t) is the solution of
e—

0z 0?2 . )
OCUE - HCU@ - frad(xut)7 (ﬂj,t) € Qu
aZ(O,t) _ end
—Kou—pg = ho(h(t) = 2(0,1)), ¢ € (0,4, (21)
R
/{Cu% = —hsz(l,t), t € (0,tnd],
Z(.I'70) == 0, T e [Oul]u )

with
Fraa (1) = - a1, Gio(6). 10 (0.8)) B(t) + o fraa .1, Go(£) o 0, 1)) 2(0, )
rad T, = 3G rad\ T, L, 0 , Ug 3 8D rad\ T, L, 0 , Upl\Y, zZ\Y, .
Moreover, we have
0
o fraa(@: 1. G D) = 477" fges (G + To) =: fi(x,1) (22)
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and
0
a—Dfrad(xa t,G,D) = —4ve 7" Bon; (D + To) =: fol,t) . (23)

Replacing fL, by frad we can derive analogous to Proposition 3.1 the following existence
result.

Lemma 5.1 Let be Gy € Dy, and the conditions of Proposition 3.1 hold. Then, for every

h € L?(0,t"), the initial-boundary value problem (21) possesses a unique weak solution
z € L2(0,t"% H1(0,1)) with
(SOUP . 12Co )220 + 11211720 pena; 100y < C NAZ2 (0 pemay (24)
te(0,ten

for some constant C' > 0.
Now we can prove differentiability of the operator F'.

Proposition 5.2 Let X = L*(0,t™). Then the operator F is Gateaux-differentiable in
D(F). For given Gy € D(F) the Gateauz-derivative F'(Gy) : L*(0,t"%) — L*(0,t°9) is
given by

[F'(Go) h)(t) := z(1, 1), t € (0,7, (25)

where z is the solution of (21). Moreover, the norm of the derivative is uniformly bounded.

PROOF. Let Gy, Gy € D(F) with h := G; — Gy and u,. defined as above. Then

[F’(Gg) h](t) — lim [F(GU + 6h’)](t) — [F(GO)](t) — lim ue?(l?t) — Uo(l,t) — Z(l,t)

e—0 £ e—0 €
for t € (0,t"d). Hence (25) defines the directional derivative of F in Gy in the direction

h. By Lemma 5.1 the definition can be extended to arbitrary h € L?(0,t?). Obviously
F'(G)y) is a linear operator and by estimate (24) we obtain

tend tend

IF/(Go) e = [ ()1 < / 2008 d
0
= C ||Z||L2(o,tend;H1(o,1)) <C ||h||%2(0,te“d)7

with constant C' > 0 independent of G;. Here we use the fact that the mapping z €
H'(0,1) = Z(I) is a bounded functional in H'(0,7). W

For finding least-squares solutions of (11) iteratively, we also need the adjoint operator
F'(Go)* : L*(0,td) — L2(0,td) of F'(Gy). Therefore we define w = w(z, t), (z,t) € Q,
as solution of the problem

ow d*w )
_CCuE = ’iCuw, (z.t) € Q,
l
Gw(O,t) . end
e = haw(0.0) + [ Ll wlet) de e (0.67) o)
0
KC“% — —haw(l,t) + p(t), £ e [0, 0],
w(z, ") = 0, z €01, )

Then the following result holds.

12



Proposition 5.3 The adjoint operator F'(Gy)* : L*(0,t") — L?(0,t°"?) of the Gdteauz-
derivative F'(Gy) is given by

[F'(Go)*p](t) := /fl(l:jt) w(z,t) dx + how(0,t), t € (0,7,

0

for arbitrary p € L*(0,t"?), where w denotes the solution of (26).

The proof is omitted here, because it is a straightforward calculation to show that

/ [F/(Go) )(t) p(t) di = / h(t) [F(Go)'pl(t) di

for all admissible parameters h,p € L2(0,t%), where F'(G)* is defined as above.

6 Solution approaches for the inverse problem

For the inverse problem aimed at finding the gas temperature G(t), t € [0,t], real
measurements ugaa(t), t € [0,t"9], can be exploited as data (see Figure 3), where the
simplified version of the arc test without additional textile material was performed for
providing such data. The used constants based on the technological literature (for details
see also [11] and [12]) are specified by the following list:

[ = 1.6mm,
Keuw = 392W -m K7,
Cecu = 3.4265-10°J - m™3K~1,
v = 2.05-10°m™*,
gu(t) = T.055-10°W - m™> - xpo.,1(1).
Beas = 1.114-107°W -m™2K ™4,
Bov; = 4.72-10 %W -m 2K %,
ho = 40W -m2K™!,
hy = 15W -m 2K L.
Here, X(q,) is the characteristic function with respect to the interval [a, b]. The values Bgas

and fBop; are products of dimensionless factors with the Stefan-Boltzmann constant. The
domain D(F') is given by (12) and a maximal temperature G,z = 8000K.

Determination without regularization

Since the calibration problem is a nonlinear inverse problem with smoothing forward
operator F, local ill-posedness in the sense of |6, Def. 2] must be expected. For studying
the ill-posedness effects occurring with equation (11) we first test a discretized version of
the least-squares fitting

|F(G) = ttaatall72(g genay — min,  subject to G € D(F). (27)
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Figure 3: Calibration measurements of calorimeter temperature.

We suggest a Newton-CG algorithm for solving the problem (27). Let Gy € D(F) be

an initial guess. Then the classical Gaul-Newton algorithm reads as Gj11 := G; + hy,
J =0,1,..., where the increment h; denotes the solution of linear normal equation
FI(Gy)"F'(Gj) h = F'(G;)" (taata — F(Gy)) - (28)

Based on the knowledge of F'(G;) and F'(G,)* we can use a CGLS-algorithm for solving
(28) (see, e.g., |1, Section 7.1|).

The Newton-CG algorithm is a modification of (28). The Newton step h; is not calculated
exactly, but approximated by the K-th CG iteration step h;x. The stopping index
K = K(j) is chosen by an appropriate stopping criterion. For example we can choose K
as smallest index which satisfies

| F(G;) + F'(G}) hj i — taata|| < max {n||F(G;) — taatal, TOLMIN} (29)

for a constant 0 < 7 < 1 and a minimal tolerance TOLMIN. Choosing 7 not too small
leads to a stabilization (regularization) of the algorithm (see [3]). Additionally, we have
to ensure, that G4 € D(F'). For this reason, a projection onto D(F') might be added in
the algorithm.

4500

400 T T T T T
gas temperature gas temperature

350
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300
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2500
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temperature

2000~

150
1500

1000 toor

5001 sor

0 5 10 15 20 25 30 0 5 10 15 20 25 30
time in sec time in sec

Figure 4: Gas temperature without regularization with zoom in the lower temperature
interval.

A solution Gys of the extremal problem (27) for our data uga, is shown in Figure 4.
The peak of Gi4(t) in a neighborhood of ¢t ~ ¢, = 0.5s caused by the extreme energy
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of the electric arc seems to be approximated quite well. For times t after this peak a
temperature decay (first with a high and at the end with a low rate) occurs, but there we
find strong oscillations of G5 in the cooling phase, which are not physically interpretable
and obviously express ill-posedness phenomena. Such oscillations cannot be accepted in
the approximate solution of G for practical use, since forward computations of the arc
test with real textile materials seem to be more sensitive to gas temperature changes in
the final phase of cooling. This is due to the fact that the thermal conductivity of the
isolation material is much lower than in the simplified test situation used for solving the
inverse problem.

A Tikhonov regularization approach

In order to overcome the drawback of ill-posedness, we should follow a regularization
approach (cf., e.g., [1], [5]) for solving the operator equation (11) by a numerical procedure
(see also [15]). Next instead of (27) we use a discretized version of the second order
standard Tikhonov method solving the extremal problem
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Figure 5: Gas temperature with second order Tikhonov regularization and zoom.

I|IF(G) — udata“iQ(O’tend) +a HG”||i2(0,tend) — min, subject to G € D(F), (30)

with minimizer GG,. For existence and stability of such minimizers G, for all a > 0 we
refer, for example, to [8]. Note, that the term ||G”Hf:2(0 renay leads to a stronger penalization

of the oscillations in the solution than the standard Tikhonov approach ||G||iQ(07tend).
Another reason for avoiding the latter term can be found in the structure of the solution.
Penalization of the norm of the solution would flatten the peak in the gas temperature
curve. Again we used a Newton-CG algorithm for solving the minimization problem (30).
It can be done similarly to the least-squares fitting stated above. However, the normal
equation (28) has to be replaced by the normal equation

(F,(GJ)*FI(GJ) +« L*L) h = FI(GJ)* (udata — F(GJ)) — L*GJ (31)
of the Tikhonov functional (30), where the linear differential operator L : D(L) C

L2(0, ) — L2(0,t*m) is defined as L G := G” with domain D(L) := {G € L*(0, ™) :
G e 12(0, 7)),
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In our studies the selection of the regularization parameter o > 0 was performed based
on the quasi-optimality criterion (see, e.g., [4, p.182]). It says that we choose the regular-
ization parameter a as the minimum point of the functional || || for @ € (i, Qmax)-
Given a sequence of parameters «; = ¢' ag with ay = apae and 0 < ¢ < 1 the minimiza-
tion can be done approximately by choosing o = a; such that ||Ga,,, — Ga,ll12(0,enay is
minimal. The resulting quasi-optimal function G, is shown in Figure 5. Oscillations also
occur in the cooling phase, but they are less and much smaller compared to the least-
squares fitting. Note that the image function F/(G,,) for the regularized solution is still a
good approximation of the data function ug,t,. The obtained regularization parameter «
and the relative error of the approximation can be found in Table 1.

We know the basic theoretical drawback (see, e.g., [1, Theorem 3.3|) of criteria for
choosing the regularization parameter a that do not exploit the noise level  satisfying
|Uexact — UdatallL2(0,4enay < 6, but unfortunately the rapidly increasing temperature of the
calorimeter (see Figure 3) in connection with temperatures up to 5000K near the arc
and unknown inertia of the measurement system makes the prescription of a realistic ¢
required for the use of a discrepancy principle very problematic. On the other hand,
the successful use of the quasi-optimality principle has been presented in very different
practical applications in literature.

A descriptive regularization approach

As third approach we use an ansatz of descriptive regularization. In detail, we add more
a priori information about the qualitative behavior of the gas temperature function, in
particular the knowledge of monotonicity expressed by a more restricted domain Dgeger C
D(F'). During the burning time of the electric arc ¢ € [0,t,] we can assume a strictly
growing function G(¢). On the other hand, for sufficiently large ¢, here ¢t > 2¢,, we have
a monotone decay of the gas temperature. For the gap interval ¢ € (¢,,2t,) we do not
impose additional requirements, but even for regularized solutions without monotonicity
we have no oscillations in this time interval. Therefore, we define

Dyeser := {G € D(F) : G(t) monotonically decreasing for ¢ € [2t,, t]} .

The regularized solution G presented in Figure 6 is obtained by solving a discretized
version of

|F(G) — Udata“i%o,tend) + a||G"H%2(07tend) — min, subject to G € Dgeger (32)

again based on a quasi-optimal choice of the regularization parameter o. The numerical
realization was performed by a penalty method. The values G*(¢) of this approximate
solution are not very different from the values G(t) for small ¢, but by construction the
function G4 () suppresses oscillations nearly complete. Since the approximation error
of Ugata by F(GIT) (see Table 1) is nearly the same as for Tikhonov regularization, the
solution G4¢5r(¢) seems to be the best approximation of the real gas temperature.

A numerical case study with synthetic data

To illustrate the results obtained we finally present a case study based on synthetic data.
We consider the function

Gr(y= | 15U (-2, <3,
T 345 exp (3E) +30,  t>3,
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Figure 6: Gas temperature with descriptive regularization and zoom.

[F(Ga) — tdatal]
[[udatall
Without regularization — 1.1082-10*
Tikhonov regularization | 2.2528-107¢ | 9.7514-107*

Descriptive regularization || 3.4337 - 107° 1.113-1073

«

Table 1: Regularization parameters and relative data discrepancy values

to be determined on the interval [0, #"!] with chosen #**! = 30 s again. Note that G*(t)
has a similar structure as the gas temperature for the real data, but with a much lower
peak at the beginning of the time interval. As data wuga.;a we used a perturbation of the
exact solution F(G*), were 6 = 107* and § = 1072 denote the relative size of the added
perturbations. In Tables 2 and 3 we present the corresponding numerical results. It can
be seen in Table 2 that without regularization a relative error of 0.1 % in the data leads
to a relative error of about 15% in the solution, which shows the ill-posedness of the
calibration problem. Using one of the two suggested regularization approaches for finding
regularized solutions GG, we can stabilize the problem. However, the idea of descriptive
regularization provides for both noise levels a better approximation of G*.

In Table 2 the regularization parameter « is chosen by the quasi-optimality criterion. For
a comparison, the final Table 3 also presents the results obtained by using Morozov’s
discrepancy principle for Tikhonov regularization. Since we know the absolute noise level
0aps for the synthetic data, we can apply the discrepancy principle which recommends to
choose & = a(dyp5) such that || F(Ga) — tgatal| = daps- We see that for both (relative) noise
levels 6 = 107* and § = 103 the discrepancy principle provides a larger regularization
parameter a and a worse approximation G, of G* than the quasi-optimality criterion.
This can be explained by the well-known overregularization effect of the discrepancy
method. On the other hand, we see that the quasi-optimality criterion seems to be a
good alternative for choosing the regularization parameter whenever the noise level ¢ is
unknown.
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Without regularization || Tikhonov regularization || Descriptive regularization
5 [Ga—G™T a [Ga—G~]l a [Ga—G~]l
G-l LGl LGl
0 6.7512 - 107° - - - -
1074 0.0266 1.1973-107° | 0.0056 | 9.6977-10~" 0.0046
1073 0.1475 4.2391-10~*| 0.0152 | 3.4337-10~* 0.0136

Table 2: Comparison of different solution approaches

Morozov’s discrepancy method || Quasi-optimality criterion
IsY ”GQG_*CJ* Il « HGaG—*le* I
d=10"*| 2.8243-107° 0.0112 1.1973-10°° 0.0056
d=1031 1.668-10° 0.0202 4.2391 1074 0.0152

Table 3: Comparison of different parameter choice strategies

7 Conclusions

e For a computer-based simulation of electric fault arc tests the determination of time-
dependent gas temperature functions G = G(t) near the arc has to be realized. This
function cannot be measured directly because of high temperatures and therefore
it has to be calibrated by using indirect measurements based on temperatures «
sufficiently far away from the arc.

e In order to overcome the drawback of ill-posedness phenomena occurring in the
corresponding nonlinear inverse problem of calibrating G, a regularization approach
is required. Otherwise, strongly oscillating solutions are obtained which cannot be
interpreted physically.

e Second order Tikhonov regularization provides acceptable approximate solutions G,
of G for the calibration problem when the regularization parameter o > 0 is chosen
by the quasi-optimality criterion.

e The solution can further be stabilized and improved by using ideas of descriptive
regularization, i.e., by exploiting the partial monotonicity of expected solutions.
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