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TRACTABILITY OF LINEAR ILL-POSED PROBLEMS
IN HILBERT SPACE

PETER MATHÉ AND BERND HOFMANN

Abstract. We introduce a notion of tractability for ill-posed op-
erator equations in Hilbert space. For such operator equations the
asymptotics of the best possible rate of reconstruction in terms of
the underlying noise level is known in many cases. However, the
relevant question is, which level of discretization, again driven by
the noise level, is required in order to achieve this best possible
accuracy. The proposed concept adapts the one from Information-
based Complexity. Several examples indicate the relevance of this
concept in the light of the curse of dimensionality.

1. Introduction

We shall introduce the concept of tractability for linear ill-posed prob-
lems, which are modeled in the form of operator equations

(1) Ax = y ,

where some injective bounded linear operator A : X → Y is acting
between real infinite dimensional Hilbert spaces X and Y . We consider
the noise model

(2) yδ := Ax+ δξ,

where the unknown noise element ξ is norm bounded by one, such
that

∥

∥Ax− yδ
∥

∥

Y
≤ δ. The goal is to approximately reconstruct the

unknown element x from the noisy data yδ. There is vast literature
available referring to the analysis of such ill-posed problems, and the
standard monograph is [3]. The optimal rates of reconstruction, under
appropriate smoothness assumptions, are known in many cases, and
often these are given in terms of the noise level δ > 0.
As usual for ill-posed operator equations (1), we consider smooth-

ness relative to the given operator A. Hence we assume that solution
smoothness is given in terms of source sets as follows:
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Definition 1 (source set). There is an index function1 ϕ such that the
unknown solution obeys

x ∈ Hϕ := {x, x = ϕ(A∗A)v, ‖v‖X ≤ 1} .

Often the ill-posed operator equation (1) refers to Hilbert spaces of
functions on a d-dimensional domain, see e.g. the examples given in
the monograph [19, Chapt. 5]. In many cases the reconstruction rate
deteriorates when the spatial dimension d grows. This is best seen in
the decay rate of the singular values of embeddings between Sobolev
spaces in Example 3 below, which exhibits a behavior of the form n−a/d,
where n is the cardinality of data, and a encodes smoothness informa-
tion. This phenomenon is often called ‘curse of dimensionality’2, and
it indicates that the amount of computational effort that is required to
find a suitable reconstruction increases exponentially with the dimen-
sion d. However, this may be foiled when the leading constant in the
asymptotics decays rapidly with increasing dimension. In such a case,
the curse of dimensionality does not necessarily reflect the difficulties
in solving the problem at hand.
In contrast, the associated decay rate may be dimension indepen-

dent ‘up to some logarithmic factor’, which depends on a power of
the dimension d. This phenomenon is also well known, specifically for
Sobolev embeddings when the underlying spaces are anisotropic. Here
we highlight the inverse problem of reconstruction of copula densities,
representing the correlation structure of a family of assets, where the
dimensionality is given by the number d of assets (cf. [2]). The recent
note [4], for example, outlines the mathematical model, where the for-
ward operator is a multivariate integration operator. Details for this
approach will be given below in Section 5. This model has also been
investigated in [21] with respect to the stable numerical solution of
the inverse problem of copula density identification, which is severely
hampered by limited computational resources. Regarding the recon-
struction rate, as δ → 0, there seems to be no impact arising from
the number of assets. However, as will be made precise below, the
discretization level (amount on linear information) may depend on d,
even exponentially. Consequently, for large d it may be infeasible in
practice to reach the region with the optimal rate of reconstruction.

1We call a function ϕ : (0,∞) → [0,∞) an index function, if it is continuous,
non-decreasing and satisfies the limit condition limtց0 ϕ(t) = 0.

2The meaning of this notion differs in varying places. Here we just mean that
the rate as a function of the amount of information, deteriorates exponentially in
the dimension.
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Therefore, in order to understand the difficulty to solve a numerical
problem to a given accuracy, a more precise understanding is required.
This purpose is achieved by studying the tractability of such problems.
Within the theory of Information-based Complexity there is a long dis-
cussion in this direction, and we refer to the three volumes [13, 14, 15].
As far as we are aware of, in the literature there is by now no discussion
of the tractability of ill-posed problems, which takes into account the
impact of both occurring facets: the dimension d and the reconstruc-
tion rate in terms of δ. Our goal here is to adapt this approach to the
theory of ill-posed operator equations. Recently, the authors in [16]
consider tractability of problems when the information is noisy. Still
this concerns direct problems. In ibid. the focus is on the comparison of
tractability with and without noisy information. For ill-posed operator
equations the presence of noise is constitutive for the error analysis.
Reconstruction rates in the presense of exact data (often called bias
decay) differ significantly from the rates under noise.
Thus, the outline is as follows. We shall formulate the problem,

including some examples in Section 2, and we give the formal definition
of tractability in Section 3. The main observation here is presented
as Theorem 1. We establish a one-to-one correspondence of the given
family of inverse problems, and a related family of direct problems,
where the class of problem elements is defined via the smoothness class
from Definition 1. This shows that our notion of tractability of a family
of inverse problems is consistent with some companion family of direct
ones.
We discuss examples for operators with power-type decay of singular

values in Section 4. Finally, we discuss the family of multivariate inte-
gration problems in Section 5. The tractability of this problem family
is stated as Theorem 2.

2. Information complexity, problem formulation

Our focus is on operator equations (1) with compact forward op-
erator A : X → Y . These operators allow for a singular value de-
composition (SVD) {sj, uj, vj}∞j=1 with a non-increasing infinite se-
quence {sj}∞j=1 of singular values, tending to zero as j tends to infinity,
and sequences uj, vj , j = 1, 2, . . . , of corresponding eigenfunctions for
the self-adjoint operators A∗A and AA∗, respectively.
The standard noise model (2) is not realistic, as elements in infinite

dimensional Hilbert spaces do not fit numerical computations, and dis-
cretization is required to do so. We follow the standard approach as
presented in [19, Chapt. 3].
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2.1. Discretization. Here we restrict ourselves to (non-adaptive) lin-
ear information, i.e., we choose linear functionals L1, . . . , Ln ∈ Y ∗ and
build the n-vector

(3) Nn(y
δ) :=

(

L1(y
δ), . . . , Ln(y

δ)
)

, yδ ∈ Y,

which we shall call information Nn. For suitable reconstructions R to
the unknown elements x ∈ X we then may use some arbitrary map-
ping ψ into the space X , acting on Nn(y

δ) ∈ R
n. Thus the admissible

reconstructions are given as

(4) xδn := R(yδ) = ψ(Nn(y
δ)), yδ ∈ Y.

Such approach to ill-posed problems which mimics Information-based
Complexity was first used in [11], and we follow this pathway.
We consider the worst-case error for any such reconstruction R which

uses information of cardinality at most n, uniformly on source sets Hϕ,
given as in Definition 1. At any instance x ∈ Hϕ the error is given as

e(R, x, δ) := sup
‖ξ‖≤1

‖x−R(Ax+ δξ)‖X ,

and the error uniformly for x ∈ Hϕ is given as

e(R,Hϕ, δ) := sup
x∈Hϕ

e(R, x, δ).

The minimal error en(Hϕ, δ) is then the minimum over all reconstruc-
tions R using information of cardinality at most n.

2.2. Problem formulation. A fundamental observation from [11] is
here rephrased as follows.

Proposition 1. Suppose that the operator A has an SVD with singular
values {sj}∞j=1, and that smoothness is given as in Definition 1 with an
index function ϕ. For j ∈ N we have that

ej(Hϕ, δ) ≥ ϕ
(

s2j+1

)

.

Remark 1. We mention that the assertion of Proposition 1 is stated in
[11, Theorem 1] for the Gelfand widths, but by virtue of [11, Lemma 1]
these coincide with the singular values.

Remark 2. In the noiseless case (δ = 0) the right hand side above is
attained by the error of spectral cut-off

R(yδ) :=

j
∑

i=1

1

si
〈yδ, vi〉ui.
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uniformly on the smoothness class Hϕ, taking into account the j largest
singular values. In this case the information Nj is based on using the
first eigenfunctions v1, . . . , vj of the operator AA∗.

The above lower bound from Proposition 1 is contrasted to the well-
known upper bound from the Melkman-Micchelli construction. We
denote by e(Hϕ, δ) the best possible accuracy of any reconstruction
making use of the full data yδ. Referring to [5] we have

(5) e(Hϕ, δ) ≤ ϕ
(

Θ−1(δ)
)

,

where Θ(t) :=
√
tϕ(t) is the companion index function to ϕ.

Consequently, the rate δ 7→ ϕ (Θ−1(δ)) is the best possible recon-
struction rate. It represents the asymptotic regime, and hence the
question is how far discretization needs to go, in order to reach this
regime.
Therefore it is interesting to discuss the index

(6) k∗(δ) :=

{

1, if Θ(s21) ≤ δ,

max {k ∈ N : Θ(s2k) > δ} , otherwise,

which describes the minimal level of discretization required to achieve
order optimal regularization.

Proposition 2. For the cardinality k∗ from (6) we have that

ϕ
(

s2k∗+1

)

≤ ϕ
(

Θ−1(δ)
)

.

Proof. By construction we see that Θ(s2k∗+1) ≤ δ. Hence

ϕ
(

s2k∗+1

)

≤ ϕ
(

Θ−1(δ)
)

,

by the monotonicity of the index function ϕ. �

Thus, from k∗ on we see the asymptotic regime given in (5) with the
rate ϕ (Θ−1(δ)), and the size of k∗ is a measure of the computational
difficulty of the problem at hand. We highlight this by the following
first example.

Example 1 (moderately ill-posed operator). Here we focus on the error
behavior as δ → 0 for a problem with operator whose singular values
tend to zero polynomially. Precisely, fix A with sj(A) ∼ j−a (j ∈
N, a > 0). Let us assume power type smoothness as in Definition 1 for
a function ϕ(t) = tp, t > 0, for some exponent p > 0. In this case

we see that k∗(δ) ≍
(

1
δ

)
1

2a(p+1/2) as δ → 0, such that the discretization
level k∗ increases polynomially in 1/δ, which is assumed to be feasible.
The asymptotically optimal rate will the be seen as δ → δp/(p+1/2),
regardless of the exponent a.
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We point out the following. When the solution smoothness is mea-
sured in terms of source conditions, as this is done in Definition 1, the
obtained error bounds are given in terms of the corresponding index
functions, and hence these are independent of the decay rates of the
singular values of the governing operator A. In contrast, the cardi-
nality k∗ very well depends on the singular values, as well as the noise
level δ. The question that we are to address is the following: If we need
a discretization level k∗ in order to enter the asymptotic regime, will
this level be feasible for a problem at hand? For further motivation we
present the next example, which is a slight variation of the first one.

Example 2 (mildly ill-posed operator). Here we consider a similar prob-
lem as in Example 1, and we assume power type smoothness as for a
function ϕ(t) = tp, t > 0, for some exponent p > 0. However, the
singular values of the operator A tend to zero slowly. Precisely, fix A
with sj(A) ∼ 1/ log(j) (j ∈ N). We need to describe k∗ based on for-
mula (6) and using the companion function Θ(t) = tp+1/2 to ϕ. Again,
the order optimal rate is given as δ → δp/(p+1/2), but here we have

k∗(δ) ∼ exp

(

(

1

δ

)1/(2p+1)
)

as δ → 0.

Thus k∗ is exponential in 1/δ. For a noise level δ := 10−4 and with
an exponent p = 1/2 in the index function ϕ, which characterizes the
solution smoothness as x ∈ R(A∗), we have that k∗ ∼ e100. This is
certainly not feasible.
We conclude that it is difficult (intractable) to discretize ill-posed

problems with mildly ill-posed operator to enter the asymptotic regime,
even if the noise level δ is moderate.

For d-dimensional (d-variate) situations, singular values and hence
the index k∗ depend on both the dimension d > 1 and the noise level
δ > 0. We present in this context another illustrative example.

Example 3 (Sobolev embeddings). Here we shall consider an ill-posed
problem when the forward operator acts along a given scale of Sobolev
spaces W µ

2 (Ω) on some bounded C∞-domain Ω ⊂ R
d (boundary con-

ditions may be imposed). This means that d is the spatial dimension
of the domain Ω.
The spaces W µ

2 (Ω) form, for a given interval [−a, a] (a > 0), a scale
of Hilbert spaces (see, e.g., [12]) with two-sided estimates generated by
some unbounded self-adjoint operator, say L. For 0 ≤ ν ≤ a we have
that x ∈ W ν

2 (Ω) exactly if x ∈ D(Lν) belongs to the domain of Lν .
Negative smoothness is given by duality.
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The above phrase ‘along a scale’ means that A acts from W−a(Ω)
to Y , and there are constants 0 < m ≤M <∞, for which

(7) m ‖x‖−a ≤ ‖Ax‖Y ≤M ‖x‖−a , x ∈ W−a
2 (Ω).

Also, we assume that the given solution smoothness is x ∈ W p
2 (Ω) =

R(L−p), and hence there is some source element v with x = L−pv. For
details we also refer to the monograph [20, Chapt. 4.9].
The crucial tool for understanding this situation is given by Dou-

glas’ range inclusion theorem, see its formulation in [9]. Thus we see

that condition (7) is equivalent to R((A∗A)1/2) = R(L−a) (with corre-
sponding norm bounds). Using Heinz’ inequality ([3, Prop. 8.21]) this

yields for 0 < p ≤ a that R((A∗A)p/(2a)) = R(L−p). The link condition
also has a consequence given by Weyl’s monotonicity theorem, see [1,
Chapt. III.2.3], and this reads as msj(L

−a) ≤ sj(A) ≤ Msj(L
−a) for

j ∈ N, where sj := sj(A) and sj(L
−a) denote the singular values of A

and L−a, respectively. It will be important to know that asymptot-
ically sj(L

−a) ≍ j−a/d as j → ∞. Hence, the dimensionality of the
domain enters the decay rate of the singular values.
For convenience let us consider the index function ϕ(t) := tp/(2a) for

describing the solution smoothness and its companion function Θ(t) :=√
tϕ(t) = t(a+p)/(2a). Moreover, for simplicity, we assume that the sin-

gular value decomposition of A is available. Then we can use this to
build reconstructions

(8) xδn :=

n
∑

j=1

1

sj
〈yδ, vj〉uj (n ∈ N)

from the singular value decomposition. Straightforward calculations
yield the order optimal error bound

(9)
∥

∥x− xδn
∥

∥

X
≤ ϕ

(

s2n+1

)

+
δ

sn
, (n ∈ N) .

For the cardinality k∗ from (6) this gives the error bound
∥

∥x− xδk∗
∥

∥

X
≤ 2ϕ

(

s2k∗
)

.

What will be the size of k∗ in terms of the dimension d and of the noise
level δ? Taking into account Weyl’s monotonicity theorem and the
present structure of the function Θ, we see that, for small 0 < δ < 1,

(10) k∗(δ, d) ≍
(

1

δ

)
d

a+p

as δ → 0,



8 PETER MATHÉ AND BERND HOFMANN

with an implied rate δ → δp/(a+p) as δ → 0. This rate is order op-
timal under the present conditions, but we stress that the discretiza-
tion level k∗ depends on 1/δ with a power having the dimension d in
its enumerator. Assuming that the leading constant, say C(d) > 0
in (10) is bounded away from zero, say C(d) ≥ 1 for simplicity, and
for a = p = 1/2 we find that k∗ ≍ 100d in the case of a moderate
noise level δ = 10−2. Such values k∗, however, are not feasible for
large dimensions. Hence the problem is difficult (intractable), even for
moderate values of δ > 0, when the dimension d is large enough.

3. Tractability

Following the monographs [13]–[15], we will now suggest a definition
that tries to formalize the notion of ‘difficulty’ that we have highlighted
in the Examples 2 and 3.

3.1. Tractability of families of ill-posed equations. We want to
capture both, difficulties for small level δ, as well as difficulties for large
spatial dimensions d. In order to capture the dimensionality d of the
problems, the concept of tractability is based on the following construc-
tion: For d ∈ N we introduce a family of linear (multivariate) prob-
lems by considering an associated family of operator equations (1) with
compact linear operators A := Ad. Having such a family Ad (d ∈ N),
with corresponding singular values sj(Ad) fixed, the following definition
seems to be appropriate, for the index k∗ = k∗(δ, d) from (6).

Definition 2 (weak tractability). We call the family of operator equa-
tions (1) with compact linear operators A := Ad (d ∈ N) weakly

tractable if we have

(11) lim
d+1/δ→∞

Q(δ, d) = 0 for Q(δ, d) :=
log(k∗(δ, d))

d+ 1/δ
.

Otherwise we call it intractable.

Remark 3. The above limit d + 1/δ → ∞ means that for each subse-
quence {(δk, dk)}∞k=1 with dk + 1/δk → ∞ the quotient Q(δk, dk) tends
to zero as k → ∞. If there are subsequences such that the quotient
Q(δk, dk) is bounded away from zero, then intractability is seen.
In particular, intractability (non-vanishing limit Q) may occur if

either

(I) d ∈ N is fixed and δ → 0 (intractability in δ), or
(II) δ > 0 is fixed and d→ ∞ (intractability in d).
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By definition, a problem is intractable if k∗ is exponential in d or 1/δ.
Of course, often a sequence of problems may be intractable in both
factors, simultaneously.

Remark 4. Formally, we just have a family of problems with the corre-
sponding sequence of compact operators Ad (d ∈ N), and these do not
need to have anything in common. In order to interpret the tractabil-
ity vs. intractability, “the reader must be convinced that the definition
of Ad (d ∈ N) properly models the same problem for varying dimen-
sions” (see [22, p. 101]). This is the case for the problem studied here.

With Definition 2 at hand, we may rephrase that the problem fam-
ily of Example 2 is intractable in δ, whereas the problem family in
Example 3 is intractable in d.

Remark 5. We add that there is a zoo of modifications of the notion
of tractability, often emphasizing power-type behavior, or other special
features, see [13, Chapt. 8]. Here we constrain to the weakest notion
of tractability.

3.2. Relation to tractability of direct problems. We now re-
late the tractability for ill-posed equations to the one as studied in
Information-based Complexity.
We recall that initially we are given an operator equation A : X → Y

as in (1). The goal was to solve the inverse problem under the knowl-
edge that the unknown solution belongs to the setHϕ from Definition 1.
Then we turned to families Ad : X(d) → Y (d) (d ∈ N) of such equations
in order to treat the tractability for families of inverse problems.
In Information-based Complexity one typically also starts with such

operator equation as in (1). However, the goal is to approximately
construct Ax, x ∈ F ⊂ X , where F is the set of problem elements.
The construction is based on informationNn(x), similarly as in (3), and
with error measured in Y . In this context the mapping A : F → Y is
called solution operator, see [13, Chapt. 4]. Typically, the set F := BX

is the unit ball in X . We agree to call this the direct problem. Again,
tractability is then defined for families of such direct problems.
Here we shall construct a companion problem ( ‘direct’ in the sense

of Information-based Complexity) to the inverse problem, taking into
account that the set BX of problem elements coincides with Hϕ from
Definition 1.
The set F := Hϕ ⊂ X of problem elements, is seen to be the unit

ball in the Hilbert space Xϕ, given as

(12) Xϕ :=
{

x ∈ ker⊥(A), x = ϕ(A∗A)v, ‖v‖X <∞
}

,
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endowed with the natural scalar product

(13) 〈x, y〉Xϕ := 〈v, w〉X,
where the elements v, w are the unique source elements, because Xϕ ⊂
ker⊥(A) is restricted to the orthogonal complement to the kernel of A.
Actually, the spaces Xϕ with ϕ being index functions generate scales
of Hilbert spaces, and we refer to the study [10].
We attach to the inverse problem the companion problem, written

as Aϕ : Xϕ → Y , to distinguish from the direct problem A : X →
Y . Given x ∈ Hϕ, the goal is to approximately compute Aϕx ∈ Y .
The error for any algorithm Rk = ψ(Nk(x)) : X → Y , using at most
information of cardinality k, is given as

(14) e(Aϕ, Rk) := sup
x∈Hϕ

‖Aϕx− Rk(x)‖Y .

Suppose that we have a familyAϕ
d : Xϕ(d) → Y (d) (d ∈ N) at hand, and

we stress that the unit balls also depend on d, such that we have Hϕ(d).
For this absolute error criterion the (weak) tractability is derived from
the information complexity n(ε, d), given as

(15) n(ε, d) := max

{

k, inf
Rk

e(Aϕ
d , Rk) > ε

}

.

(We tentatively assume that ε > 0 is small enough, such that ε <
‖Ad‖Xϕ→Y .) According to [13, § 4.4.2] the problem is (weakly) tractable

if

(16) lim
d+1/ε→∞

log(n(ε, d))

d+ 1/ε
= 0,

otherwise it is intractable. For the companion problems Aϕ
d the infor-

mation complexity n(ε, d) is characterized by the singular values sd,k, k ∈
N of the maps Aϕ

d : Xϕ(d) → Y (d) via

(17) n(ε, d) = max {k, sd,k > ε} .
The main observation is that the family of inverse problems and the
family of companion problems share the same tractability behavior.

Theorem 1. Suppose that we have a problem family Ad (d ∈ N)
with rank(Ad) = ∞ and SVD (s̃d,k, ud,k, vd,k), k ∈ N, with smooth-
ness given as in Definition 1. Then we have for k∗(δ, d) from (6) the
identity

k∗(δ, d) = n(δ, d).

Thus, the ill-posed problem family Ad (d ∈ N) is tractable if and only
if the family of companion problems Aϕ

d (d ∈ N) is tractable.
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Proof. We need to find the SVDs of the maps Aϕ
d : Xϕ(d) → Y (d).

Knowing the SVD of Ad : X(d) → Y (d) we argue as follows. For ev-
ery d ∈ N, and corresponding SVD (s̃d,j , ud,j, vd,j), j = 1, 2, . . . of the
map Ad, we see that

(18) Adϕ(A
∗
dAd)ud,j = s̃d,jϕ(s̃

2
d,j)vd,j , j ∈ N.

Consequently, the map Aϕ
d : Xϕ(d) → Y (d) has the following SVD,

namely, in terms of the companion function Θ to ϕ,
(

Θ(s̃2d,j), ϕ(A
∗A)ud,j, vd,j

)

, j ∈ N.

Notice, that by construction, for every d ∈ N the elements ϕ(A∗
dAd)ud,j

form an orthonormal basis in Xϕ. Thus, we see that

(19) n(δ, d) = max
{

k, Θ(s̃2d,k) > δ
}

= k∗(δ, d).

The proof is complete. �

Above we have established a one-to-one correspondence between the
tractability of inverse problems with smoothness given as in Defini-
tion 1, and families of companion problems Aϕ

d : Xϕ(d) → Y (d). As
a counterpart we have the corresponding family Ad : X(d) → Y (d) of
direct problems (in the sense of Information-based Complexity). These
families of problems are related as follows.

Corollary 1. Suppose that we have a family Ad (d ∈ N) of operator
equations. The following holds true.

(1) If the family of direct problems Ad : X(d) → Y (d) is tractable,
then this holds true for the corresponding family Aϕ

d : Xϕ(d) →
Y (d). Hence, the family of inverse problems is tractable regard-
less of the smoothness given in Definition 1.

(2) If there is smoothness as in Definition 1 with index function ϕ,
for which the family of inverse problems is intractable, then
so is the family of companion problems Aϕ

d : Xϕ(d) → Y (d).
Consequently, the family of direct problems Ad : X(d) → Y (d)
is intractable.

Sketch of the proof. Let us temporarily abbreviate kϕ∗ (δ, d) = k∗(δ, d)
to highlight the dependency on the smoothness, given in terms of the
index function ϕ. Furthermore, we confine the the case when kϕ∗ (δ, d) →
∞ as d+ 1/δ → ∞. Hence, if d+ 1/δ is large enough, we may assume
that ϕ(s̃2

d,kϕ
∗

) ≤ 1. In this case we learn from (19) that

kϕ∗ (δ, d) = max
{

k, Θ(s̃2d,k) > δ
}

≤ max
{

k, s̃2d,k > δ
}

= n(δ, d).

The assertions of the corollary are a direct consequence of this relation.
�
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Remark 6. A less technical argument is as follows. By construction,
we have the continuous embedding Xϕ(d) →֒ X(d). After rescaling we
may assume that Hϕ(d) ⊆ BX(d), where BX(d) is the unit ball in X(d).
Thus, if the family is tractable on BX(d) then it will also be tractable
on Hϕ(d), which corresponds to the tractability of the family of inverse
problems. Similarly, if for some ϕ the family of inverse problems will
be intractable, then the family of direct problems (on BX(d) ⊃ Hϕ) will
also be intractable.

We close this section with the following observation. Often it may
be hard to get grip on the exact value for k∗. Clearly, tractabil-
ity/intractability is an asymptotic property. If k∗(δ, d) is uniformly
bounded then tractability is clearly seen. So, the interesting case is
when k∗(δ, d) → ∞ as d + 1/δ → ∞. Then the following auxiliary
result can be used.

Proposition 3. Let a > 0 and b ∈ R. The following holds true,
whenever ak∗ + b is positive.

(i) The problem is tractable if and only if

lim
d+1/δ→∞

log (ak∗(δ, d) + b)

d+ 1/δ
= 0.

(ii) If along a subsequence {(δk, dk)}∞k=1 we have that

Q(δk, dk) ≥ c > 0 ,

then log(ak∗(δ,d)+b)
d+1/δ

≥ c/2 > 0 for dk + 1/δk large enough.

Hence the problem family is intractable.

Sketch of a proof. The analysis is simple, and we just hint that

log (ak∗ + b)

d+ 1/δ
=

log
(

ak∗

(

1 + b
ak∗

))

d+ 1/δ
=

log(k∗)

d+ 1/δ
+

log(a)

d+ 1/δ
+
log
(

1 + b
ak∗

)

d+ 1/δ

The last two terms on the right tend to zero as d + 1/δ → ∞, and
hence have no impact on the asymptotics. �

4. Power-type decay of the singular values

Here we discuss in more detail another example, showing that the
joint limit d+1/δ → ∞ may be crucial. We assume a power-type decay
of the singular values of the operator family Ad (d ∈ N). Specifically
we assume that for some power a > 0, and a leading term3 c

(

1
d

)

there

3We chose the parametrization in terms of 1/d, because then the constant c
(

1

d

)

may be decreasing with increasing dimension d.
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are constants 0 < m ≤M <∞ such that we have

(20) m c

(

1

d

)

j−a/d ≤ sj(Ad) ≤M c

(

1

d

)

j−a/d (j ∈ N).

For the tractability analysis the following observation is useful: Look-
ing at the definition of k∗ in (6), and taking into account the bounds
from (20), we see the following:

(1) If j <

(

m2c( 1
d)

2

Θ−1(δ)

)d/2a

then k∗(δ, d) ≥ j.

(2) If j ≥
(

M2c( 1
d)

2

Θ−1(δ)

)d/2a

then k∗(δ, d) ≤ j.

By taking largest and smallest such values j, respectively, we end up
with the following two-sided bound.

(21)

(

m2c
(

1
d

)2

Θ−1(δ)

)d/2a

− 1 ≤ k∗(δ, d) ≤
(

M2c
(

1
d

)2

Θ−1(δ)

)d/2a

+ 1.

Thus, in order to see tractability for a given situation, we need to
consider the right hand side, whereas the left hand side will be used to
show intractability. In this context, the assertion of Proposition 3 may
be used.
We discuss the impact of the behavior of the leading constant c

(

1
d

)

on tractability/intractability. We will distinguish three benchmark sit-
uations. If c

(

1
d

)

is bounded away from zero as d → ∞, intractabil-

ity occurs. If c
(

1
d

)

goes to zero quickly, at least linear in 1/d, then

tractability is seen. In the intermediate cases, specifically if c
(

1
d

)

is
sublinear in 1/d, then intractability can be seen for low smoothness.
We give details for these cases, next.

a) c
(

1

d

)

is bounded from below: In this case the analysis is partic-
ularly simple.

Proposition 4. If c
(

1
d

)

≥ c > 0 then the problem family Ad (d ∈ N)
is intractable.

Proof. If c
(

1
d

)

is bounded away from zero as d → ∞, then the lower
bound in (21) yields for δ0 < Θ(m2c2) an exponential increase in d,
and the problem is intractable in d. �

b) c(1/d) is at least linear in 1/d: In this case the following is seen.

Proposition 5. If the function t 7→ c(t) is at least linear, i.e., c(t) ≤ c̄t
for some constant c̄, then the problem family Ad (d ∈ N) is tractable.
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For the proof we need the following simple but important observa-
tion, which takes into account the special form of the function Θ.

Lemma 1. For each constant C0 > 0 there is δ0 > 0 such that

C2
0 δ

2 ≤ Θ−1(δ) whenever 0 < δ < δ0.

Proof. Clearly, for the given smoothness function ϕ we find δ0 > 0 such
that

C0 δ ϕ(C
2
0 δ

2) ≤ δ, for 0 < δ ≤ δ0.

By the definition of Θ this yields Θ (C2
0 δ

2) ≤ δ for 0 < δ ≤ δ0, and the
proof can easily be completed. �

Proof of Proposition 5. We distinguish two cases, relevant for the anal-
ysis. First let us assume that δd ≥ c > 0. Then we apply Lemma 1
with C0 :=

Mc̄
c . This gives

M2 c̄
2

d2
≤ C2

0 δ
2 ≤ Θ−1(δ) for c/d ≤ δ ≤ δ0,

which by virtue of (21) implies k∗ ≤ 2 in this case.
Next, let us assume that δd→ 0, in particular δ → 0. Specifically we

may assume δd ≤ c̄, and δ ≤ δ0. By using the right hand side in (21),
we can bound from above as

k∗ − 1 ≤
(

M2c
(

1
d

)2

Θ−1(δ)

)d/2a

≤
(

M2c̄2

d2Θ−1(δ)

)d/2a

.

Lemma 1 with C0 :=Mc̄ yields δ0 > 0 such that

M2 c̄2/Θ−1(δ) ≤ 1/δ2 (δ ≤ δ0),

and we can estimate as

log(k∗(δ, d)− 1)

d+ 1/δ
≤ δd

2a
log

(

M2c̄2

d2Θ−1(δ)

)

≤ δd

2a
log

(

1

(δd)2

)

,

which implies that log(k∗(δ,d)−1)
d+1/δ

tends to zero as δd → 0. By virtue of

Proposition 3 the proof is complete, and we have tractability. �

c) c
(

1

d

)

is sublinear: This case exhibits an interesting feature. To be

precise we assume here that the function 1/d→ c
(

1
d

)

is the restriction
of a strictly increasing continuous sublinear4 index function c : (0,∞) →
(0,∞).

4An index function f is called sublinear if the function t 7→ t/f(t) is an index
function.
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Proposition 6. Suppose that the function t→ c(t) is strictly increas-
ing and sublinear. For a constant C > 1/m2, with m from (20), let ϕ
be any index function which satisfies

(22) ϕ(t) ≥ c−1(
√
Ct)√
t

(0 < t ≤ 1/C).

Then the problem family is intractable for this smoothness ϕ.

Proof. First notice, that the right hand side constitutes an index func-
tion, since with s := c−1(

√
Ct) we see that

c−1(
√
Ct)√
t

=
√
C

s

c(s)
,

and the sublinearity of c applies.

If the function ϕ obeys (22), then with letting t :=
c( 1

d)
2

C
we find that

Θ

(

c
(

1
d

)2

C

)

≥ 1

d
,

and hence that

c

(

1

d

)2

≥ C Θ−1

(

1

d

)

,

which implies

(23)
m2c

(

1
d

)2

Θ−1
(

1
d

) ≥ Cm2 > 1 (d ∈ N).

Consequently, for the sequence (δ(d), d) with δ(d) = 1/d we can see
that k∗(1/d, d) + 1 is growing exponentially with d, because the asso-
ciated constant Cm2 is greater than one. By using Proposition 3, this
shows intractability under the given smoothness ϕ from (22). �

Example 4. Let us consider the case when c(t) = tq for some 0 < q < 1,
to maintain sublinearity. Then the benchmark smoothness on the right

in (22) is seen to be t→ t
1−q
2q . This highlights that we need to have low

smoothness if q is close to one, whereas smoothness can be arbitrarily
large when q tends to zero.

5. Multivariate integration operator

The current study was inspired by the investigations in [4] for the op-
erator of d-variate mixed integrationAd : L

2(0, 1)d → L2(0, 1)d (d ∈ N),
which is defined for 0 < s1, . . . , sd < 1 as

(24) (Adx)(s1, . . . , sd) :=

∫ sd

0

· · ·
∫ s1

0

x(t1, . . . , td) dt1 · · ·dtd.
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It was shown in [4], and it was evaluated in a different context also
in [7], that the singular values behave as

(25) sj(Ad) ≍ C(d)
logd−1(j)

j
as j → ∞.

Remark 7. Formulas of the form (25) possessing the associated asymp-
totics as j → ∞ occur in different applications. For example, we
have such formulas in [17] for characterizing the j-th entropy numbers
of an embedding operator from Sobolev spaces of dominating mixed
smoothness to L2(0, 1)d, and in [18] for the Kolmogorov j-th-width in
case of periodic functions over the d-dimensional torus T

d. Within
the present context, the study [8] is most important. These authors
analyze approximation numbers (coinciding with singular values) of
Sobolev embeddings over the d-dimensional torus Td. So, different be-
havior of C(d) under the auspices of the formula (25) can be seen in
the literature.

The major point in [4] was to stress that the degree of ill-posedness
of the operators Ad from (24) with the asymptotics (25) for the singular
values proves to be one, regardless of the spatial dimension d. Here, the
degree of ill-posedness measures the power-type decay of the singular
numbers of the operators Ad, and we have that

lim inf
j→∞

− log(sj(Ad))

log(j)
= lim sup

j→∞

− log(sj(Ad))

log(j)
= lim

j→∞

− log(sj(Ad))

log(j)
= 1,

see [4, Def. 1.1].
However, such a family Ad (d ∈ N) of problems may be intractable.

Then the degree of ill-posedness does not necessarily reflect the diffi-
culty for solving the related ill-posed problem, and the decision between
tractability and intractability is influenced by the behavior of the lead-
ing constant C(d).
If C(d) ≥ c > 0, then the problem is obviously intractable in d,

because the function f(t) = logd−1(t)
t

(t ≥ 1) is growing for t ∈ [1, ed−1]
and thus log(k∗(δ, d)) ≥ d− 1 for sufficiently small δ > 0.
The situation may change when C(d) tends to zero as d → ∞. To

this end, let us assume smoothness given by any index function ϕ with
related companion Θ, as described in Definition 1. The following result
is relevant.

Proposition 7. Suppose that, for a family Ad (d ∈ N) of compact
operators obeying a singular value behavior of the form (25), there is a

constant c0 > 0 such that C(d) ≥ c0
(

e
d−1

)d−1
(d = 2, 3, ...), and hence
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there is some constant c > 0, for which the singular values sj(Ad) are
bounded from below by

(26) sj(Ad) ≥ c

(

e

d− 1

)d−1
logd−1(j)

j
(j, d = 2, 3, . . . ) .

Then the family Ad (d ∈ N) is intractable in d.

Proof. By the definition of k∗ in (6) we can argue as follows: If for an
index l we see that s2l (Ad) > Θ−1(δ) then k∗(δ, d) ≥ l. We let l :=
⌈ed−1⌉, the smallest integer larger than ed−1, and we fix some δ0 ≤ 1/2
such that 4Θ−1(δ0) < c. Then, for d ≥ 2, we can bound

sl(Ad) ≥ c

(

e

d− 1

)d−1
logd−1(l)

l

≥ c

(

e

d− 1

)d−1
logd−1(ed−1)

ed−1 + 1

≥ c

2

(

e

d− 1

)d−1(
d− 1

e

)d−1

=
c

2
>
√

Θ−1(δ0).

Therefore s2l (Ad) > Θ−1(δ0), and hence k∗(d, δ0) ≥ ed−1. But then,
for d ≥ 1/δ0 ≥ 2 we see that

log(k∗(d, δ0))

d+ 1/δ0
≥ d− 1

2d
≥ 1/4,

such that the family Ad (d ∈ N) of operators is intractable in d. �

Now we return to the family of multivariate integration operators
from (24), and we will show that this class of ill-posed problems is
weakly tractable.

Theorem 2. For the family of compact multivariate integration opera-
tors Ad : L

2(0, 1)d → L2(0, 1)d defined in (24) we have for the constant
C(d) in (25) that
(27)

C(d) ∼ 1

(d− 1)! πd

(

≍ 1√
d− 1

(

e

π(d− 1)

)d−1
)

as d → ∞,

and hence this class of problems is weakly tractable in d.

Proof. Formula (27) is known from [6, Thm. 2]. Indeed, this author
bounds the singular values of the multivariate problem from known
bounds for the underlying univariate ones by noting that the singular
numbers sj(Ad) are the nonincreasing rearrangement of the dth tensor
power of the univariate numbers sj(A1). Solving this problem is not a
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trivial task, and the proof [6, Thm. 2] is based on [8, Thm. 4.3]. The
singular values for the univariate integration operator A1 are known
to behave like sj(A1) ∼ 1

πj
, as j → ∞. Therefore, we can apply [6,

Thm. 2] by setting s = 1 and c = π−1.
The weak tractability in d for the multivariate integration operator

can be seen by comparison with the decay rate of C(d) with

(28) C̃(d) ≍ 2d

(d− 1)!
as d → ∞.

The latter has been established in [8, Theorem 4.3] (case s = 1) for ap-
proximation numbers sj of embedding operators that follow a rule ana-
log to (25). By virtue of [8, Corollary 5.3] the situation (28) represents
(quasi-polynomial) tractability, and hence weak tractability. Since the
decay rate of C(d) from (27) is higher than the rate of C̃(d) from (28),
this implies that also the direct problem with multivariate integration
operators is weakly tractable in d. By virtue of Corollary 1 this also
implies the tractability of the inverse and ill-posed problem. �

Acknowledgments

The authors are very grateful to Thomas Kühn (Leipzig) for point-
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[5] B. Hofmann, P. Mathé, and M. Schieck. Modulus of continuity for condition-
ally stable ill-posed problems in Hilbert space. J. Inverse Ill-Posed Probl.,
16(6):567–585, 2008.

[6] D. Krieg. Tensor power sequences and the approximation of tensor product
operators. J. Complexity, 44:30–51, 2018.
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[9] P. Mathé. Bayesian inverse problems with non-commuting operators. Math.

Comp., 88(320):2897–2912, 2019.
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