Exercises Singularity Theory

- 1. (2 points) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2$.
 - (a) Show that f has a non-isolated singularity at 0.
 - (b) Show that f is not k-determined, for every $k \ge 0$. <u>Hint</u>: For any $l \in \mathbb{N}$, consider the function $g_l : \mathbb{R}^2 \to \mathbb{R}$, $g_l(x, y) = x^2 - y^{2l}$.
- 2. (4 points) Denote by \mathcal{G} the set of germs of local diffeomorphisms/local biholomorphisms ϕ at the origin in $\mathbb{R}^n/\mathbb{C}^n$ leaving the origin invariant.
 - (a) Check that \mathcal{G} is a group under the composition, and that

$$\begin{aligned} \mathcal{R} \times \mathcal{G} &\to \mathcal{R} \\ (f, \phi) &\mapsto f \circ \phi \end{aligned}$$

is a well-defined right group action on \mathcal{R} (in the differentiable and holomorphic case).

- (b) Note that f ~ g, as defined in Lecture 6, if and only if f and g are in the same orbit under the action of G; in this case, we say that f is right-equivalent to g. On the other hand, we say that f and g in R are k-equivalent if their Taylor polynomials T^k_f and T^k_g are the same. What can we say about relation between equivalence and k-equivalence? <u>Hint</u>: Look at the germ of the function f : ℝ → ℝ, f(x) = 2(e^x - 1), and compare it with the germ of the identity function on ℝ.
- (c) Show that the ideal \mathfrak{m}^{∞} in \mathcal{R} is preserved by \mathcal{G} , and conclude that \mathcal{G} acts on the quotient $\mathcal{R}/\mathfrak{m}^{\infty}$ (this is a non-trivial statement only in the differentiable case).
- (d) In the one dimensional case and for $\mathcal{R} = \mathcal{E}$, what are the orbits of the action of \mathcal{G} on $\mathcal{E}/\mathfrak{m}_{\mathcal{E}}^{\infty}$? Do they have distinguished representatives?
- 3. (2 points) Using Nakayama's Lemma, show that the ideal $\mathfrak{m}_{\mathcal{E}}^{\infty}$ in \mathcal{E} is not finitely generated.